Synthesis of New High-Pressure Columbite Phases Containing Pentavalent Vanadium

M. GONDRAND, A. COLLOMB, J. C. JOUBERT AND R. D. SHANNON*

Laboratoire des Rayons X, C.N.R.S., B.P. No. 166, Centre de Tri, 38042 Grenoble Cedex, France

Received August 23, 1973

A series of MV_2O_6 compounds with M = Ni, Mg, Co, Zn, Mn, and Cd having the orthorhombic columbite-type structure has been prepared at pressures of 50–80 kbar and temperatures of 800–1200°C. CuV_2O_6II was found to have a monoclinic distortion with probable space group $P2_{1/c}$ and a = 4.824(1), b = 13.483(2), c = 5.652(1) Å and $\beta = 91.02(2)$. The transition from the brannerite to columbite-type structures involves an increase of V^{5+} coordination from $5 + 1 \rightarrow 6$, a change in oxygen packing from cubic close-packed to hexagonal close-packed, a retention of part of the structure of the VO₆ sheets and a collapse of the MO₆ rutile-like chanins into α PbO₂ chains.

The relative stabilities of the trirutile, columbite, and $PbSb_2O_6$ structures are discussed in terms of electrostatic repulsion forces, polarization, and covalency. It is concluded that minimization of cation-cation repulsion for d^{10} ions cannot be responsible for the stability of the trirutile structure, since the d^{10} ions As⁵⁺ and Sb⁵⁺ are frequently found in the PbSb₂O₆ structure in which each Sb⁵⁺ or As⁵⁺ ion has 3 Sb⁵⁺ or As⁵⁺ neighbors.

In plots of r_{M}^{3} vs unit cell volumes for $MV_{2}O_{6}$ and $MNb_{2}O_{6}$ compounds, the volume of the Mgcontaining compound always lies above the line connecting the other compositions. This deviation is attributed to the relatively greater covalence and consequent shortening of M–O bonds where M = Ni, Co, Zn, Mn, and Cd.

Introduction

In ternary oxides $M_x V_y O_z$ pentavalent vanadium is 4-, 5- or 6-coordinated. Thus, by analogy with other compounds containing cations showing variable coordination, i.e., B^{3+} , Si^{4+} , $Ge^{4+}(I)$, and $Mo^{6+}(2)$, we anticipate that in certain instances high pressure will increase the coordination of V⁵⁺. Indeed, this has already been demonstrated in the cases of $CrVO_4$ (3), $FeVO_4$ (3, 4) and $Hg_2V_2O_7$ (5). In normal-pressure $CrVO_4$ and $FeVO_4$ vanadium is tetrahedrally coordinated; application of a pressure of 60 kbar produces structures containing octahedral V^{5+} - $CrVO_4$ with a disordered rutile-type structure and $FeVO_4$ with a wolframite-type structure. The structure of

At normal pressures, the phases MV_2O_6 with M = Co, Zn, Mg, Cd, and Hg (7-10) have the brannerite (ThTi₂O₆) structure (11). CuV₂O₆ has been reported to exhibit two structures at normal pressures, both closely related to the brannerite structure (12, 13). In the brannerite and brannerite-related structures, the M^{2+} ions are octahedrally coordinated and the V⁵⁺ ions have 5 + 1 coordination. The vanadium ions have occasionally been described as 5-coordinated because the sixth oxygen atom is only weakly bonded (7, 14) at distances of 2.4–2.8 Å. In this paper we report syntheses of the high-pressure phases MV_2O_6 where M = Ni, Co, Cu, Zn, Mg, Mn, and Cd with

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

^{*} On leave of absence from Central Research Department, E.I. Du Pont de Nemours, Wilmington, Delaware.

the normal-pressure phase of $Hg_2V_2O_7$ recently determined by Quarton et al. (6) contains 5-coordinated V⁵⁺; at pressures of 30–65 kbar it transforms to the pyrochlore structure with octahedral V⁵⁺ (5).

GONDRAND ET AL.

TABLE I

M ²⁺	Starting material	Pressure (kbar)	Temperature (°C)	Time (h)	Product	Crystals (*)	Impurities (+)
Ni	$+ \frac{\text{NiO}}{V_2O_5}$	50	900	1	NiV2O6II		
Ma	_ MgO	50)	1000	1	MgV2O6II	*	+
Mg	⁺ V ₂ O ₅	(50	1150	1			+
	CuO	(30	750	1	CuV2O6I	*	
Cu	$+$ $\frac{cuo}{v}$	{ 50	1000	1	CuV₂O6I + II	*	
	V ₂ O ₅	50	900	1	CuV2O6II	*	
Ca	, CoO	(50	830	1	CoV2O6II		
0	$^{+}V_{2}O_{5}$	(80	900	1	CoV2O6II		
	ZnO	(50	1150	1	ZnV₂O₀II	*	
7-	$^{+}V_{2}O_{5}$	180	1200	1	ZnV2O6II		+
Zn	7-01	(40	900	1	ZnV₂O6II	*	+
	$+\frac{2\pi C_{1_2}}{2W_{1_2}}$	50	900	3	ZnV2O6II		
	$2KVO_3$	45	1030	1	ZnV ₂ O ₆ II	*	
	MnO	(50	900	1	?	*	+
	$+ V_{2}O_{5}$	80	1000	1	?		+
Mn		65	800	1	?		MnO
	MnV ₂ O ₆ I	65	800	1	MnV ₂ O ₆ II		
~	CdO	(50	700	1	CdV ₂ O ₆ II		CdO
Cđ	$+ V_{2}O_{5}$	50	1000	1	CdV ₂ O ₆ II		+
~	CaO	(40	800	1	?	*	+
Ca	+ v.o.	80	800	1	?	*	+

Experimental Conditions for Preparation of $M^{2+}V_2^{5+}O_6$ Compounds with Columbite Structure

the columbite-type structure.¹ This series of brannerite-columbite transitions involves an increase in V⁵⁺ coordination and a rearrangement of octahedra similar to the rutile $\rightarrow \alpha PbO_2$ transition.

Experimental

The starting materials were reagent grade oxides for the vanadates containing Ni, Mg, Cu, Co, Zn, Cd and Ca. The oxides were thoroughly mixed, placed in a Pt capsule, heated in a belt-type apparatus at various pressures and temperatures for 1 hr, and quenched rapidly (see Table I). The details of the technique are published elsewhere (15, 16). The starting material for manganese vanadate was prereacted MnV_2O_6 having the brannerite

¹ We call the brannerite phases MV_2O_6I , and the columbite phases MV_2O_6 II.

structure. Crystals of ZnV_2O_6 II were prepared by an exchange reaction of the type:

$$ZnCl_2 \cdot xH_2O + 2KVO_3 \rightarrow ZnV_2O_6 + 2KCl + xH_2O$$

The starting materials were placed in a Pt capsule, pressed at high temperature and quenched.

Crystals of ZnV_2O_6 II, MgV_2O_6 II and CuV_2O_6 II,² having an average dimension of 0.1 mm were obtained from the mixtures of the oxides and had generally a dark color. Crystals of ZnV_2O_6 II obtained from the exchange reaction were transparent and lighter in color.

² Repeated attempts to prepare the monoclinic variety of CuV_2O_6 reported by Lavaud and Galy (12) always resulted in the triclinic phase reported by Calvo and Manolescu (13). Until the monoclinic phase is confirmed, we call the triclinic form CuV_2O_6 I and the columbite form CuV_2O_6 II.

TABLE IIA

Powder Diffraction Pattern of ZnV_2O_6II

h k l	Iobs	dobs	dcai
200	2	6.783	6.789
310	45	3.518	3.517
111			3.526
311	100	2.842	2.842
020	35	2.795	2.794
021	30	2.417	2.418
002	35	2.412	2.412
600	10	2.262	2.263
511	5	2.179	2.179
321	35	2.131	2.132
302			2.128
312	15	1.989	1.989
022	25	1.826	1.826
620	15	1.759	1.758
131	25	1.723	1.723
330			1.722
602	50	1.651	1.650
621			1.652
331	10	1.622	1.622
313	30	1.462	1.462
531			1.463
622	10	1.420	1.421
332	25	1.402	1.401
911	35	1.394	1.394
023			1.393
513	10	1.342	1.343
041			1.342
730			1.343
641	5	1.155	1.154
723	5	1.132	1.131

X-ray powder diffraction patterns of NiV₂O₆ II, MgV₂O₆ II, CoV₂O₆ II, and CdV₂O₆ II were taken using a CGR-Guinier camera with KCl as an internal standard. The "d" values were calculated using λ (FeK α) = 1.9373 Å and a(KCl) = 6.293 Å, Powder diffraction patterns of ZnV₂O₆ II and CuV₂O₆ II were taken using a Hägg–Guinier camera with a KCl internal standard and "d" values calculated using λ (CuK α_1) = 1.54051 Å. The diffraction patterns of ZnV₂O₆ II, CdV₂O₆ II and CuV₂O₆ II and CuV₂O₆

Powder Diffraction Pattern of CdV₂O₆II

hkl	Iª	dobs	dcal	
200	М	7.16	7.06	
3 1 0)	Μ	3.63	3.63	
111	St	3.62	3.605	
400	W	3.54	3.538	
311	V. St.	2.932	2.925	
020	М	2.847	2.849	
220	W	2.644	2.643	
$\left. \begin{array}{c} 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right\}$	Μ	2.467	2.468 2.466	
600	W	2.36	2.358	
221 202	W	2.33	2.330 2.329	
420	W	2.215	2.219	
3 2 1) 3 0 2)	М	2.183	2.186 2.185	
312	W	2.037	2.040	
4 2 1) 4 0 2)	W	2.02	2.024 2.024	
022	St	1.865	1.865	
620	Μ	1.818	1.817	
222	W	1.804	1.803	

^{*a*} W = weak, M = medium, S = strong, V. St. = very strong.

lines were evident in all patterns except those of MnV₂O₆; Thus, MnV₂O₆ apparently has the disordered α -PbO₂ structure. It is surprising that a compound containing two ions so different in size and charge as Mn²⁺ and V^{5+} can disorder. This disorder would be more consistent with a change of oxidation state such as $Mn^{3+}V^{4+}V^{5+}O_6$, but no evidence confirming or rejecting such a possibility was obtained in this study. As anticipated from other studies of isotypic series of oxides containing the Jahn-Teller ion Cu²⁺, the powder patterns of CuV₂O₆ II indicated a splitting of most of the columbite lines. Although no single crystal of CuV₂O₆ could be found it was possible using the strongest reflections of a multiple crystal to ascertain the unit cell and space group. Absences of h0l, $l \neq 2n$; 0k0, $k \neq 2n$; and 00l, $l \neq 2n$

Powder Diffraction of CuV2O6II		VDER DIFFRACTION OF CuV ₂ O ₆ II <i>hk l</i>		hkl	Iobs	d _{obs}	d _{cai}
	 ,	·		033	35	1.737	1.737
	lobs	dobs	d _{cal}	-162	35	1.658	1.658
				043	75	1.644	1.644
26	6	.732	6.741	260			1.644
75 3.	3.	517	3.517	-1 3 3			1.643
			3.511	162			1.646
2 3.241	3.241		3.244	-321	2	1.514	1.513
90 2.85	2.85	57	2.857	330			1.513
100 2	2	2.826	2.827	-172			1.515
			2.825	331	25	1.468	1.468
	40	2.455	2.457	331	35	1.456	1.456
	30	2.417	2.417	-271			1.458
			2.419	082	2	1.446	1.447
	40	2.411	2.411	091			1.448
	10	2.309	2.308	-262	2	1.427	1.428
	15	2.246	2.247	-233	10	1.421	1.420
	5	2.176	2.175	004	10	1.413	1.412
			2.179	262			1.413
	20	2.156	2.155	-3 4 1			1.410
	40	2.129	2.130	233	30	1.398	1.398
3	5	2.125	2.125	341			1.400
	25	1.999	1.999	-312			1.400
	25	1.978	1.978	-1 6 3	15	1.388	1.388
	5	1.849	1.850	191			1.388
			1.844	-1 8 2			1.389
	2	1.797	1.797	302	30	1.386	1.386
			1.800	191			1.385
	15	1.758	1.758	0 10 0	5	1.348	1.348
			1.755	034			1.347

TABLE IIC

TABLE IIC-continued

TABLE III

CELL DIMENSIONS OF VANADATE COLUMBITE-TYPE PHASES

Compound	[r _M] ^{3a}	a Å	bÅ	c Å	β°	$\frac{V}{4}$, Å ³	$\frac{V_B - V_C}{V_B} \%^b$
NiV2O6II	0.33	13.338 ± 5	5.544 ± 2	4.845 ± 2		89.6	
MgV ₂ O ₆ II	0.37	13.56 ± 3	5.571 ± 7	4.860 ± 6		91.8	10.0
CoV ₂ O ₆ II	0.41	13.501 <u>+</u> 9	5.556 ± 3	4.825 ± 3		90.5	7.2
ZnV ₂ O ₆ II	0.42	13.579 ± 2	5.589 ± 1	4.824 ± 1		91.5	8.2
MnV ₂ O ₆ II	0.57	13.75 ± 1	5.597 ± 5	4.874 ± 3°		93.8	6.2
CdV ₂ O ₆ II	0.86	14.16 ± 1	5.704 ± 5	4.936 ± 3		99.7	7.7
CuV ₂ O ₆ II	0.39	4.824 ± 1	13.483 ± 2	5.652 ± 1	91.02 ± 2	91.9	7.5

^a $r_{\rm M}$ = effective ionic radius of M²⁺. ^b V_B = unit cell volume of brannerite phase; V_C = unit cell volume of columbite phase. ^c This is a hypothetical columbite cell; the smaller α PbO₂-type cell is: a = 4.583; b = 5.597; c = 4.874 Å.

FIG. 1. A sheet of VO_6 octahedra in the brannerite structure (taken from Ref. 11). The octahedra formed by heavy lines are linked as in columbite (see Fig. 3b for comparison).

indicated space group $P2_{1/c}$ and the following unit cell:

 $a = 4.824 \pm 1$ Å $b = 13.483 \pm 2$ $c = 5.652 \pm 1$ $\beta = 91.02 \pm 2$.

The relationship between this cell and the orthorhombic columbite cell is:

$$a_{mon} = c_{ortho}$$

 $b_{mon} = a_{ortho}$
 $c_{mon} = b_{ortho}$

The increase in density of the CuV_2O_6 columbite phase over the triclinic room pressure form is 7.5%.

Discussion

The brannerite structure is characterized by a distorted cubic close-packed oxygen network.³ In the brannerite-type phases, MV_2O_6 , the M^{2+} ions are octahedrally coordinated and the V⁵⁺ ions have an irregular

³ This structural feature of brannerite was kindly pointed out to us by Dr. Sten Andersson.

octahedral coordination. The VO₆ octahedra form infinite zigzag sheets of edge-shared octahedra parallel to the (100) planes (11). In Fig. 1 we show a perspective view of the VO_6 octahedra in the brannerite structure. Each octahedron shares an edge with 3 other octahedra. In addition we have indicated with heavy lines a columbite-type chain of octahedra which we believe is retained during the transition. Between the VO_6 sheets the MO_6 octahedra form infinite rutile-like chains running along the *b*-axis. Unlike rutile, however, these chains are not linked to each other; they provide a rather open structure between the VO₆ sheets. The brannerite \rightarrow columbite transition thus involves a change from a cubic close-packed to a hexagonal close-packed oxygen network, a retention of part of the structure of the VO_6 sheets, and a collapse of the MO₆ rutile-like chains into αPbO_2 chains. The volume changes resulting from the brannerite-columbite transitions are of the order of 8 % (see Table III). The stability field of the II-V columbite

The stability field of the II-V columbite structure is outlined in Fig. 1. As in the case of several other structures, e.g., rutile (17), perovskite (18), and pyrochlore (19), the use of pressure considerably extends the stability field of the columbite structure. Several runs were made in an effort to extend the columbite

FIG. 2. Stability field of $M^{2+}M_2^{5+}O_6$ compositions having the columbite structure.

stability field to arsenates and phosphates. The compound CdAs₂O₆ was heated to 900°C and 80 kbar, and quenched; however, the PbSb₂O₆ structure remained unchanged. We subjected NiP₂O₆ to a pressure of 80 kbar at 750°C, and 1000°C for 1 hr. Although a transition to a slightly denser (~ 2%) monoclinic form isotypic with α_2 ZnP₂O₆ (20) was found, no coordination change of the P⁵⁺ occurred. Apparently, very high pressures will be necessary to produce octahedral P⁵⁺.

In the $A^{2+}B^{5+}O_6$ stability field containing octahedral cations there are 3 structures in question: trirutile, columbite, and PbSb₂O₆. All three structures are characterized by hexagonal close-packed oxygen arrays and octahedral cations. Thus, the relative densities will be similar for all three. The fact that the trirutile and PbSb₂O₆ structures fall within the columbite stability field shows that ionic size is not the most important factor.

FIG. 3. Arrangement of octahedra and cation distribution in the (a) trirutile, (b) columbite, and (c) $PbSb_2O_6$ structures.

It has been previously noted by Blasse (21, 22) and Goodenough and Kafalas (23) that structural differences between numerous compounds containing Nb⁵⁺ and Sb⁵⁺ arise because of differences in the electron configurations of Nb⁵⁺ (d^{0}) and Sb⁵⁺ (d^{10}). Here we note that the synthesis of the MV₂O₆ columbite phases strengthens the observation that d^{0} cations (V⁵⁺, Nb⁵⁺, and Ta⁵⁺) behave differently from the d^{10} cations (As⁵⁺ and Sb⁵⁺). The differences in electronic structure lead to different degrees of electrostatic repulsion, covalency, and polarization forces (21–23).

We begin with an analysis of electrostatic repulsion forces in these structures. In trirutile (24) there exist infinite *c*-axis chains of $M^{2+}-Nb^{5+}-M^{2+}$ (Fig. 3a). The columbite structure (25) is characterized by infinite zigzag chains of M²⁺-M²⁺-M²⁺ and Nb⁵⁺- $Nb^{5+}-Nb^{5+}$ along the *c*-axis (Fig. 3b). In the $PbSb_2O_6$ structure there are alternate layers of PbO_6 and SbO_6 octahedra (26). The SbO_6 octahedra form a hexagonal network in which each octahedron shares an edge with 3 other octahedra (see Fig. 3c). The isolated PbO_6 octahedra share corners with the SbO₆ octahedra. Blasse (21) analysed the structural differences between numerous compounds containing Sb5+ and Nb5+ and based on cation-cation repulsion considerations concluded that Sb^{5+} with its d^{10} electron configuration prefers structures in which each Sb⁵⁺ ion has as few Sb⁵⁺ neighbors as possible. In contrast Nb⁵⁺ because of its d^0 configuration and its resulting ability to form π bonds was able to enter into structures in which Nb⁵⁺ ions can have more than one Nb⁵⁺ neighbor.

Thus, Blasse concluded that MSb_2O_6 phases form the trirutile structure in which each M^{5+} ion has only one neighboring M^{5+} ion whereas the MNb_2O_6 phases have the columbite structure in which each Nb^{5+} ion has 2 Nb^{5+} neighbors. However, in his analysis of $M^{2+}M_2^{5+}O_6$ compounds, he neglected the PbSb₂O₆ structure which is formed by many arsenates and antimonates. Since, in this structure, each Sb⁵⁺ (or As⁵⁺) ion has three Sb⁵⁺ (As⁵⁺) neighbors and the repulsion effects must be very great, minimization of

FIG. 4. Unit cell volume vs $r_{\rm M}^3$ for the phases: (a) MV₂O₆I having the brannerite structure, and (b) MV₂O₆II and MNb₂O₆ having the columbite structure.

TABLE IV

Unit Cell Dimensions of $NiNb_2O_6$, $MgNb_2O_6$, and $ZnNb_2O_6$

Compound	a Å	ЬÅ	c Å	V Å ³
NiNb ₂ O ₆	14.034(10)	5.678(3)	5.020(4)	100.0
MgNb ₂ O ₆	14.187(10)	5.702(3)	5.030(4)	101.7
$ZnNb_2O_6$	14.194(7)	5.721(2)	5.030(3)	102.1

electrostatic forces cannot be responsible for stabilization of the Sb^{5+} compounds.

An analysis of covalency and polarization effects can be made by noting the environments of the oxygen atoms in the three structures. In trirutile and PbSb₂O₆ each oxygen is surrounded by 2 Sb^{5+} and one M^{2+} cations. In columbite, one oxygen atom has 3 Nb^{5+} neighbors; one has 2 Nb^{5+} and $1 M^{2+}$; and one has 1 Nb^{5+} and $2 M^{2+}$ neighbors. Blasse has noted that Sb⁵⁺ prefers structures where the anions can be strongly polarized and this is consistent with the fact that the Sb⁵⁺ is found in both trirutile and PbSb₂O₆ structures and not generally in the columbite Nb^{5+}

figuration.4

Goodenough and Kafalas (23) consider that σ bond covalency can stabilize a structure. This stabilization energy will be greater for structures containing Sb⁵⁺ both because of the greater electronegativity of Sb⁵⁺ (2.2) compared with Nb⁵⁺ (1.6) and because of the tendency of Nb⁵⁺ to lose σ bond character by formation of π bonds. Covalent stabilization will be strongest in structures with 90° Sb⁵⁺-O²⁻-Sb⁵⁺ interaction because two different Op_{σ} orbitals are utilized rather than one in 180° configurations. Thus, configurations

⁴ However such a configuration is not impossible for Sb⁵⁺. It has been reported in the columbite MnSb₂O₆ (27) and in K₃Sb₅O₁₄ (28). Although Brandt did not unambiguously identify MnSb₂O₆ as having the columbite structure, there is no doubt about the environment of the oxygen atoms in K₃Sb₅O₁₄. with Sb⁵⁺ on the same side of the anion are preferred and the hypothetical configuration _Sb⁵⁺

 $Sb^{5+}-O^{2-}$ for antimonate columbites Sb^{5+}

is not as energetically favorable.

In Figs. 4a and 4b the unit cell volumes of the brannerite-type vanadates and columbitetype niobates⁵ and vanadates are plotted as a function of the cube of the radius of the M²⁺ cation $(r_{\rm M})$. It is apparent that MgNb₂O₆ and MgV_2O_6 deviate considerably from the curves. In all three plots the line connecting the volumes of the compounds containing the more electronegative elements Ni, Co, Zn, Mn, and Cd is lower than a hypothetical line connecting the less electronegative Mg- and Ca-containing compounds.⁶ We believe these deviations are real and can be explained on the basis of the relative differences in degree of covalence of Mg-O bonds and M-O bonds where M = Ni, Co, Cu, Zn, Mn, and Cd. We attribute the reduced volume of oxides containing Ni, Co, Zn, Mn, and Cd to the increased covalence of the M-O bond when O is also coordinated to an electronegative cation such as V5+. A similar covalent shortening of bond distances was found in an analysis of tetrahedral V⁵⁺-O and Mo⁶⁺-O distances (34, 35).

Acknowledgments

We would like to thank M. Perroux for assistance in carrying out the high-pressure experiments and Drs. A. W. Sleight and J. F. Whitney of the Central Research Department, E. I. du Pont de Nemours, for obtaining the Hägg-Guinier photographs. We

⁵ The unit cell dimensions used for the niobate plot were those of Cummings and Simonsen (29) for CaNb₂O₆, Senegas and Galy (30) for NiNb₂O₆, Schroecke (31) for FeNb₂O₆, Weitzel and Klein (32) for CoNb₂O₆, and Brandt (27) for MnNb₂O₆ and ZnNb₂O₆. In order to confirm the relative positions of MgNb₂O₆, NiNb₂O₆ and ZnZb₂O₆ we redetermined the cell dimensions of these three compounds (see Table IV).

⁶ It must be remembered that the radii used in these plots are the radii which were derived from the MO compounds and which give a linear plot for *these* oxides (*33*).

would also like to thank Drs. J. A. Kafalas and J. B. Goodenough for pointing out the importance of covalent bonding energy in antimonates.

References

- J. C. JOUBERT AND J. CHENAVAS, New phases from high pressure, in "Treatise on Solid State Chemistry," Vol. IV (N. B. Hannay, (Ed.), 1973.
- A. W. SLEIGHT AND B. L. CHAMBERLAND, *Inorg.* Chem. 7, 1672 (1968).
- 3. A. P. YOUNG AND C. M. SCHWARTZ, Acta Cryst. 15, 1305 (1962).
- F. LAVES, A. P. YOUNG, AND C. M. SCHWARTZ, Acta Cryst. 17, 1476 (1964).
- 5. A. W. SLEIGHT, Mater. Res. Bull. 7, 827 (1972).
- 6. M. QUARTON, J. ANGENAULT, AND A. RIMSKY, Acta Cryst. **B29**, 567 (1973).
- 7. J. ANGENAULT, Rev. Chim. Minérale 7, 651 (1970).
- J. C. BOULOUX AND J. GALY, Bull. Soc. Chim. France 736 (1969).
- 9. H. NG AND C. CALVO, Canad. J. Chem. 50, 3619 (1972).
- 10. C. CALVO, personal communication.
- 11. R. RUH AND A. D. WADSLEY, Acta Cryst. 21, 974 (1966).
- 12. D. LAVAUD AND J. GALY, Bull. Soc. Franc. Mineral. Crist. 95, 134 (1972).
- 13. C. CALVO AND D. MANOLESCU, Acta Cryst. B29, 1743 (1973).
- 14. J. ANGENAULT AND A. RIMSKY, Compt. Rend. Acad. Sci. Paris 267C, 227 (1968).
- 15. J. CHENAVAS, These d'Etat, Grenoble (1973).
- J. CHENAVAS, J. C. JOUBERT, J. J. CAPPONI, AND M. MAREZIO, J. Solid State Chem. 6, 1 (1973).
- R. D. SHANNON AND C. T. PREWITT, Crystal Chemistry of High Pressure Phases, Mineralogical Soc. Amer. Mtg., Mexico City, Mexico, Nov. 13, 1968.
- 18. R. D. SHANNON, Inorg. Chem. 6, 1474 (1967).
- R. D. SHANNON AND A. W. SLEIGHT, *Inorg. Chem.* 7, 1649 (1968).
- M. BEUCHER AND J. C. GRENIER, *Mater. Res. Bull.* 3, 643 (1968).
- 21. G. BLASSE, J. Inorg. Nucl. Chem. 26, 1191 (1964).
- 22. G. BLASSE, J. Inorg. Nucl. Chem. 27, 993 (1965).
- 23. J. GOODENOUGH AND J. KAFALAS, J. Solid State Chem. 6, 493 (1973).
- 24. A. BYSTRÖM, B. HOK AND, B. MASON, Arkiv Kemi, Miner. Geol. 15B, 4 (1941).
- 25. J. H. STURDIVANT, Z. Krist. 75, 89 (1930).
- 26. A. MAGNÈLI, Arkiv Kemi, Miner. Geol. 15B, 3 (1941).
- 27. K. BRANDT, Arkiv Kemi, Miner. Geol. 17A, 15 (1943).

- 28. B. AURIVILLIUS, Arkiv Kemi 25, 505 (1964).
- 29. J. P. CUMMINGS AND S. H. SIMONSEN, Amer. Mineralogist 555, 90 (1970).
- 30. J. SENEGAS AND J. GALY, J. Solid State Chem. 5, 481 (1972).
- 31. H. SCHROECKE, Beitr. Mineral. Petrog. 8, 92 (1961).
- 32. H. WEITZEL AND S. KLEIN, Solid State Commun. 12, 113 (1973).
- 33. R. D. SHANNON AND C. T. PREWITT, J. Inorg. Nucl. Chem. 32, 1427 (1970).
- 34. R. D. SHANNON, Chemical Commun. 881 (1971).
- 35. R. D. SHANNON AND C. CALVO, J. Solid State Chem. 6, 538 (1973).